Artikel Ilmiah

 

 

 

 

 

HOME

 

Teori Waktu Einstein

Fitriyah

Pernah merasa waktu berjalan cepat atau terasa begitu lambat? Seperti saat waktu berlalu begitu cepat ketika Anda sedang bersama teman- teman atau saat waktu terasa begitu lambat ketika Anda terjebak dalam hujan. Tapi Anda tidak bisa mempercepat atau memperlambat waktu kan?

Waktu selalu berjalan dalam kecepatan yang konstan. Einstein tidak berpikir demikian. Ide dia adalah semakin kita mendekati kecepatan cahaya, semakin lambat waktunya relatif dibandingkan kondisi orang yang tidak bergerak. Dia menyebutnya melambatnya waktu karena gerakan. Tidak mungkin, kamu bilang? Oke, bayangkan ini. Kamu berdiri di bumi, memegang jam. Teman baikmu ada di dalam roket dengan kecepatan 250.000 km/detik. Temanmu juga memegang sebuah jam. Kalau kamu bisa melihat jam yang dibawa temanmu, kamu akan melihat bahwa jam itu tampak berjalan lebih lambat daripada jam kamu. Sebaliknya temanmu akan merasa jam yang ia bawa berjalan biasa2 aja (tidak melambat), dia pikir malah jam kamu yang tampak berjalan lebih lambat.

Masih bingung? Ingat, Einstein butuh 8 tahun untuk menemukan hal ini. Dan dia dianggap jenius. Einstein memberikan contoh untuk menunjukan efek perlambatan waktu yang dia sebut “paradoks kembar”. Seperti permainan penjelajah waktu. Mari kita mencobanya dengan menganggap ada 2 orang kembar bernama Eyne dan Stine. Dua2nya kita anggap berumur 10 tahun. Eyne memutuskan dia sudah bosan di bumi dan perlu liburan. Dia mendengar bahwa ada hal yang menarik di sistem bintang Alpha3, yang berjarak 25 tahun cahaya. Stine yang harus mengikuti ujian matematika minggu depan, harus tinggal di rumah untuk belajar. Jadi Eyne berangkat sendiri. Ingin sampai secepatnya di sana, dia memutuskan untuk berjalan dengan kecepatan 99,99% kecepatan cahaya. Perjalanan ke sistem bintang itu bolak balik membutuhkan waktu 50 tahun. Apa yang terjadi ketika Eyne kembali? Stine sudah 60 tahun, tapi Eyen masih berumur 10 1 tahun. Bagaimana mungkin? Eyne sudah pergi selama 50 tahun tapi hanya bertambah umur 1 tahun! Hey, apakah Eyne baru saja menemukan mata air awet muda!

Ide Einstein tentang waktu yang melambat tampak benar dan semua adalah teori, tapi bagaimana kamu tahu kalau dia benar? Salah satu cara adalah dengan naik roket dan memacu roket itu mendekati kecepatan cahaya. Tapi sampai saat ini, kita belum bisa melakukannya. Tapi ada satu cara untuk mengetestnya. Bagaimana kita tahu kalau Einstein tidak salah? Percobaan ini mungkin bisa memberikan penjelasan atas idenya. Jam atom adalah jam yang sangat akurat, bisa mengukur satuan waktu yang sangat kecil. Sepersejutaan detik bisa diukur. Di tahun 1971, ilmuwan menggunakan jam ini untuk mengetest ide Einstein. Satu jam atom diset di atas bumi, dan satu lagi dibawa keliling dunia menggunakan pesawat jet dengan kecepatan 966 km/jam. Pada awalnya kedua jam itu diset agar menunjukan waktu yang sama. Apa yang terjadi ketika jam dibawa mengelilingi dunia dan kemudian kembali ke titik di tempat jam satunya lagi berada? Sesuai perkiraan Einstein, kedua jam itu sudah tidak menunjukan waktu yang sama. Jam yang sudah dibawa keliling dunia, menunjukan keterlambatan waktu seperberapa juta detik!

Kamu mungkin bertanya kenapa kok bedanya begitu kecil? Pertanyaan yang bagus! Yah, 966 km/jam cukup cepat, tapi masih belum mendekati kecepatan cahaya. Untuk melihat perbedaan waktu yang signifikan, kamu harus melaju dengan sangat lebih cepat.

 

(http://www.forumsains.com/profile/Fitriyah/)

Interaksi Fundamental dan Partikel Elementer

Mumud Salimudin

Pandangan terhadap alam semesta ini dapat menjadi lebih baik jika diketahui komponen-komponen dasar materi penyusun benda-benda di alam semesta serta interaksi antar komponen-komponen dasar tersebut. Sejauh ini, telah dapat diketahui adanya empat bentuk interaksi fundamental yang bertanggung jawab terhadap berbagai macam interaksi antar materi. Secara umum, konsep interaksi digunakan untuk menyatakan hubungan timbal-balik antara objek-objek yang ditinjau. Konsep ini bermanfaat terutama untuk analisa bentuk hubungan antar objek materi. Keempat interaksi fundamental tersebut adalah: interaksi gravitasi, elektromagnetik, nuklir lemah dan nuklir kuat.

Interaksi gravitasi bersifat tarik-menarik (selalu tarik-menarik) antar partikel-partikel materi. Hukum Newton tentang gravitasi universal menyatakan, besar interaksi tarik-menarik antar dua partikel materi sebanding dengan massa kedua partikel tersebut dan berbanding terbalik dengan kuadrat jarak yang memisahkan keduanya. Interaksi ini memiliki jangkauan yang amat jauh (tak hingga), karena bila terdapat partikel-partikel materi maka tentu terjadi interaksi gravitasi. Interaksi gravitasi inilah yang menyebabkan partikel materi mengumpul menjadi satu hingga terbentuk planet-planet, bintang-bintang, yang menyusun tata surya serta galaksi. Konsep interaksi memerlukan adanya "partikel interaktif" untuk menyatakan gagasan hubungan antar partikel materi. Dalam hal interaksi gravitasi, interaksi antar partikel materi dilakukan oleh partikel interaktif graviton. Graviton bersifat tak bermassa, sehingga jangkauan interaksinya meliputi jarak tak hingga dan bergerak dengan kecepatan cahaya. Karena kekuatan interaksi gravitasi sangat lemah (paling lemah bila dibandingkan dengan tiga interaksi yang lain), maka sukar untuk mendeteksi keberadaan graviton ini.

Interaksi fundamental berikutnya, interaksi elektromagnetik, terjadi antara partikel-partikel bermuatan listrik (atau partikel bermuatan saja). Berbeda dengan interaksi gravitasi yang bersifat hanya tarik-menarik, interaksi elektromagnetik bisa tarik-menarik maupun tolak-menolak. Sesama proton atau sesama elektron, interaksi yang terjadi bersifat tolak-menolak. Hal ini disebabkan karena proton memiliki muatan sejenis dengan proton lain-katakanlah bermuatan listrik positip dan demikian juga interaksi antar elektron yang dicirikan dengan muatan listrik-katakanlah negatif. Sebaliknya, terjadi interaksi tarik-menarik antara proton dan elektron, karena mereka berbeda muatan!

Sebagaimana interaksi gravitasi memerlukan ide graviton, interaksi elektromagnetik juga perlu ide-katakanlah foton. Sejauh ini diketahui, foton tak bermassa. Struktur atom dapat dipahami sebagai interaksi tarik-menarik antara proton (inti) dan elektron yang mengelilingi inti. Demikian juga dengan struktur molekul, zat padat dan zat cair. Interaksi elektromagnetik memiliki kekuatan interaksi yang relatif lebih besar yakni sekitar 1 dengan 37 nol dibelakangnya bila dibandingkan dengan kekuatan interaksi gravitasi.

Interaksi nuklir lemah memiliki jangkauan interaksi paling pendek bila dibanding dengan interaksi fundamental yang lain. Interaksi ini memiliki kekuatan interaksi relatif lebih besar bila dibandingkan dengan interaksi gravitasi yakni sekitar 1 dengan 34 nol di belakangnya.

Interaksi nuklir lemah berperan dalam koreksi susunan inti atom. Inti atom yang tersusun dari sejumlah proton dan sejumlah neutron dengan perbandingan yang tak harmonis akan berusaha mendapatkan komposisi yang proporsional dengan melakukan peluruhan partikel beta. Partikel interaktif interaksi lemah diemban oleh boson madya, sebagai penghubung antara kuark (partikel elementer penyusun proton dan neutron) dan lepton.

Interaksi nuklir kuat bertanggung jawab terhadap penggabungan kuark menjadi proton atau neutron, serta penggabungan keduanya menjadi inti atom. Interaksi nuklir kuat antar kuark dihubungkan oleh partikel interaktif yang disebut gluon, menggabungkan kuark-kuark terikat menjadi nukleon. Dan juga, interaksi antar hadron (misal, proton dan neutron) yang dihubungkan oleh meson, yang mengikat nukleon menjadi inti atom. Interaksi nuklir kuat berperan penting dalam jangkauan pendek dan memiliki kekuatan interaksi relatif paling besar bila dibandingkan dengan kekuatan interaksi fundamental yang lain.

Sintesa Interaksi Fundamental

Sebelum adanya formulasi interaksi gravitasi Newtonian, belumlah diketahui apakah fenomena jatuhnya benda ke bumi adalah fenomena yang sama dengan gerak bulan mengelilingi bumi. Berdasarkan analisa data pengamatan astronomi yang dilakukan Kepler dalam formulasi kinematika gerak benda langit-Hukum Kepler, Newton menyatakan dalam bentuk yang lebih umum, bahwa interaksi benda jatuh ke bumi dan interaksi planet mengelilingi bumi adalah jenis interaksi yang sama-interaksi gravitasi.

Interaksi gravitasi dalam formulasi Hukum Gravitasi Universal lebih lanjut disempurnakan oleh Einstein dalam Teori Relativitas Umum. Relativitas Umum berbasiskan asas kesetaraan yang mengatakan bahwa, hukum-hukum alam harus dituliskan dalam bentuk demikian sehingga tak mungkin membedakan antara medan gravitasi serbasama dengan suatu kerangka acuan yang dipercepat. Dengan Teori Relativitas Umum, garis edar planet Merkurius yang berinteraksi dengan matahari (juga dengan planet-planet lain) dapat dijelaskan secara lebih akurat bila dibandingkan dengan menggunakan Hukum Gravitasi Universal. Meski demikian, Hukum Gravitasi Universal cukup memadai untuk keperluan praktis karena bentuknya yang lebih sederhana.

Interaksi elektromagnetik pada mulanya juga dipahami secara terpisah sebagai interaksi listrik dan interaksi magnetik. Kenyataannya, keduanya merupakan dua aspek dari satu sifat materi, yakni muatan listrik. Sementara muatan listrik yang diam relatif terhadap pengamat hanya menimbulkan medan listrik, pengamat menimbulkan medan listrik dan medan magnetik-medan elektromagnetik.

Interaksi elektromagnetik yang diformulasikan oleh Maxwell berdasarkan simetri permasalahan yang telah dilakukan Faraday. Karya Faraday menunjukkan bahwa perubahan medan magnet terhadap waktu menimbulkan medan listrik, sedangkan karya Maxwell menunjukkan bahwa perubahan medan listrik terhadap waktu menimbulkan medan magnet. Dari formulasi interaksi elektromagnetik Maxwell, dapat diprediksi adanya gelombang elektromagnetik yang menjalar dengan kecepatan cahaya. Keberadaan gelombang elektromagnetik dibuktikan secara eksperimental oleh Hertz, memiliki banyak penerapan dalam teknologi modern, misalnya gelombang radio. Ini salah satu bukti keterkaitan erat antara fisika teoritik dengan teknologi.

Hal yang sama berlaku bagi interaksi elektromagnetik dan interaksi lemah yang pada mulanya dipahami sebagai bentuk interaksi yang berbeda. Formulasi interaksi elektrolemah (sintesa interaksi elektromagnetik dan interaksi lemah) oleh Salam, Weinberg, Glashow menyatkan bahwa, pada dasarnya tak ada perbedaan mendasar antara partikel interaktif elektromagnetik (foton) dan partikel interaktif nuklir lemah (boson madya) pada tingkat energi tinggi; meskipun pada tingkat energi rendah, foton dan boson madya tampak berbeda. Fenomena ini dikenal sebagai perusakan simetri serta merta (spontaneous symmetry breaking). Kebenaran teori Salam, Weinberg, Glashow terbukti secara eksperimental dengan ditemukannya partikel boson madya W+,W- dan Z0 .

Sintesa interaksi fundamental berikutnya adalah sintesa interaksi elektrolemah dengan interaksi nuklir kuat sebagai interaksi terpadu akbar. Gagasan interaksi terpadu akbar ini menyatakan, bahwa pada energi yang sangat tinggi (energi penyatuan akbar) interaksi elektromagnetik, interaksi nuklir lemah dan interaksi nuklir kuat memiliki kekuatan yang sama sebagai satu macam interaksi.

Salah satu upaya utama fisika saat ini adalah memahami semua bentuk interaksi fundamental sebagai satu kesatuan interaksi (dari berbagai sumber

 

 

Kembali ke Daftar Judul Tulisan Onlin

 

Created By M.Sutarno@2009, email : nelan_indah@yahoo.com

Free Web Hosting